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ABSTRACT
This study explores a structural damage detection strategy employing the novel use of chaotic time series

excitation.  Chaotic time series have several useful properties such as determinism and controllable dimension.
Therefore, these series are attractive candidates for probing a structure’s dynamics for the subtle changes that
could occur because of damage. This approach is applied to a metal frame structure connected by bolted joints.
Under loading, fatigue damage causes the pre-loads in the bolts to lessen, leading to an increasing inability of the
joint to accommodate design loads.  This project explores the use of propagating chaotic waveforms through the
frame structure and to determine a diagnostic parameter that reflects the structural health of the bolted joints.
Analysis of vibration response to chaotic input is used to detect the extent and location of pre-load loss.  Using the
cross-prediction error as a feature for damage detection was successful in identifying damage and, using
excitation to response prediction errors, locating damage.  However, in other cross comparisons of attractors, the
prediction error was not able to locate the damage.  In addition, the extent of damage was not correlated with the
magnitude of prediction error.

NOMENCLATURE
N dimension of a system
x, x(t) a time-dependent variable corresponding to a degree of freedom in the system
x(N )  the Nth derivative of x
T time delay for attractor reconstruction
m embedding dimension of attractor
x,y,z three coordinates describing the degrees of the system of the Lorenz attractor
m global mean of the resampled data subsets
Za/2  standard normal deviate associated with 95% confidence
s global standard deviation of the resampled subsets
n size of each resampled subset

I.  INTRODUCTION
The ability to detect structural damage is vital to the maintenance of any mechanical system.  With an

increasing trend toward reducing maintenance personnel for large mechanical systems such as naval vessels,
methods to detect and locate damage must be implemented to compensate for personnel reduction. Structural
health monitoring (SHM) seeks to extend the operational lifetime of a structure and prevent structural failures,
which are often catastrophic.  The usual steps in SHM are to identify damage, estimate the extent of damage,
locate the damage, and predict the remaining life of the structure.  This study focuses on the diagnosing the
presence, extent, and location of damage rather than the prognosis of future performance of the structure.  A
variety of SHM techniques exist to identify damage using non-destructive operational evaluation and feature
extraction.

Traditional acoustic approaches for structural health monitoring usually use broadband, stochastic
excitation.  For example, modal-based techniques focus on the transient response of the structure, which is
characterized by its damping and mode shapes.  Other techniques focus on the steady state response to ambient
excitation.  An overview of vibration-based techniques is provided in [1].  The drawback of an acoustic modal
approach is that the steady state response of a structure to a wide-bandwidth excitation is often too high-



dimensional for reliable interpretation of damage conditions.  On the other extreme, response to purely sinusoidal
input is too low-dimensional to allow observable changes in the system’s dynamic response.  However, by using
chaotic excitation interrogation of a structure, the steady state response is both high-dimensional enough to
reflect the dynamic range of the structure’s health conditions and low-dimensional enough for calculation of a
reliable feature diagnostic.

Chaotic excitation methods have been shown to be capable of detecting bolt pre-load loss through
comparison of a structure’s  changing response to a deterministic input signal at different damage conditions.
Previous studies [2,3,4] used the auto-prediction error of an attractor reconstructed from sensor responses as a
feature to diagnose the extent of damage to the structure.  Other work using chaotic excitation examined instead
the cross-prediction error between pairs of sensor responses in order to estimate both extent and location of
damage [4].  This study uses similar data acquisition and cleansing techniques to calculate cross-prediction error
to diagnose damage of an aluminum frame structure.   Section II, Method of Approach, provides a more detailed
background of the techniques for analyzing chaotic dynamics.

Because large mechanical systems often have thousands of bolted joints to clamp surfaces together, this
study focuses on the loss of preload in bolted joints by examining the structure’s response to a chaotic time series
excitation.  Varying the pre-load tension in a bolt changes the integrity of the particular joint and also changes the
structure’s global dynamic properties.  The damaged frame structure then responds differently to the same
chaotic input, in this case, the Lorenz attractor.   Section III describes the laboratory procedure for controlling
damage to the frame structure, cleansing data, and calculating cross prediction errors.

Out of the three objectives to identify, estimate extent of, and locate damage, the cross-prediction error
approach used with the test structure could only identify and, in selected channel cross-relationships, locate
damage.  Section IV and V discuss the results of the study and make recommendations for further investigation of
the cross-prediction error method as a damage detection strategy.

II.  NONLINEAR CROSS-PREDICTION ERROR METHOD
This section outlines the damage detection strategy used by reviewing chaotic dynamics and attractor-

based analysis.  Analysis of a time series in phase space reveals useful topographic features of the data.
However, practical reconstruction of an attractor from experimental data requires careful choice of parameters for
the delay coordinate approach.  Once attractors have been reconstructed from response time series, the cross-
prediction error of two attractors is a feature used to compare the relationship between the two time series.  More
detailed explanations of nonlinear time series analyses are provided in References [2-5].

A. Attractors and phase space orbit trajectories
Consider a system of ordinary differential equations with N degrees of freedom, with each coordinate

being a different function of the system’s state:

(1)

where x1, x2, …xN are the N coordinates of the system, and F1, F2,…FN are the state functions describing the
system.  The solution to this system traces out a unique path in an N-dimensional space [6]. For any system with
dissipative qualities (true for all real structures), the trajectory will eventually collapse onto a lower-dimensional
response than the full phase space.  If the system is stable, the trajectory will return to this same orbit even if the
system is perturbed.  This attractor thus describes the steady state behavior of the system (see Figure 1).

The trajectory describing a system with multiple degrees of freedom has certain geometric properties
such that viewing a system’s response in phase space form reveals information about the structure otherwise
missed by other modal-based and/or transient techniques.  Attractors describing structural response to purely
sinusoidal input are often one-dimensional.  However, because of the controllable dimension of chaos, using a
chaotic waveform to interrogate the structure will result in higher-dimensional attractors that are still low-enough
dimension for robust calculations.

Specifically, the Lorenz attractor is a three dimensional system described by the system of equations:

     (2)

where x, y, z are the three coordinates of the system, and q, r, b are constants.  Because
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the Lorenz attractor is well-understood and has been used in previous studies as
the input excitation [2-5], this project will use the x coordinate of the Lorenz
attractor as the chaotic waveform used to interrogate the structure.   (See
Section IIIA on Experimental Procedure.)  The Lorenz system was first inspired
by weather modeling research and is sensitive to small changes in initial
parameters [7].  Because the Lorenz attractor has a low dimension of three, it is
useful for chaotic interrogation to control the dimensionality of the structural
response.

Using time series techniques to analyze the phase space response of a
structure to chaotic input allows varying damage conditions to be observable in
the geometry of the constructed attractor.

B.  Attractor reconstruction using delay coordinate approach
In theory, an attractor in phase space is an N-dimensional trajectory constructed from a time series x and

its successive N-1 time rates of change.  In practice, it is often difficult to directly and completely measure all of
the degrees of freedom for a given structural system.  It is useful to instead qualitatively reconstruct a
topologically equivalent attractor with a delay coordinate approach [8].   This idea, known as Taken’s theorem, is
powerful because it implies that the dynamic properties of a system of x and its continuous derivatives are
completely captured in a qualitative sense by the time series x alone [9].  Thus, attractor reconstruction of a
measured laboratory system is possible from a single discrete time series response. This transformation is useful
because computerized data acquisition systems record discrete rather than continuous time signals.

The delay coordinate approach [10] successively shifts the original time series x in place of directly
measuring or continuously differentiating to find its time-derivatives.  Two essential parameters are the time delay
T and the embedding dimension m, which respectively describe how many time steps and for how many times the
signal is recursively shifted.  Using this technique, an attractor represented in phase space by x, x’, x’’,…x(N) is
reconstructed from x(t), x(t+T), x(t+2T),…x(t+(m-1)T).   Figure 2 shows an example of the original Lorenz attractor
and the attractor with equivalent topology that was reconstructed by embedding the coordinate x.

A variety of algorithms exist for choosing
appropriate values for the delay and embedding
dimension so that each shifted time signal is neither
redundant nor completely independent [11].  Many
methods select the delay T as the time for which the time
series is least correlated with itself, either when the auto-
correlation function of the signal is a minimum, a zero, or
below a threshold percent [2,12,13].  Similarly, the
dimension m is chosen when the number of ‘false nearest
neighbors‘ [11] is a minimum or below a threshold such
that the attractor is unambiguously unfolded in m -
dimensional phase space.

For a monitored system, a number of attractors
can be reconstructed from sensor signals describing the
structure’s dynamic response at various locations.  The
properties of the reconstructed attractors can be
compared by computing a parameter called the prediction
error.

C. Comparing attractors with cross-prediction error
As a structure’s health degrades, the relative dynamics of system’s local regions change.  Accordingly,

the attractors reconstructed from sensor signals at various locations have different topologies for the range of
damage conditions.  In particular, as pre-load tension in a bolted joint decreases, the response of the parts in the
vicinity become decoupled.

The cross-prediction error is one metric that describes the relationship between attractors representing
two time series [10,12].  This approach was originally developed to detect time series nonstationarity [14] but
adapted algorithms have been used in other work for structural health monitoring [2-5].  Similar to the method
used in [5], this study uses the cross-prediction error as an extracted feature for damage detection.

Figure 2.  Left, the original Lorenz attractor plotted
from numerical solutions of x, y, and z from the
system of equations.  Right, the Lorenz attractor
reconstructed using the delay coordinate approach
to embed the coordinate x.

Figure 1.  A limit cycle is
an example of a one-
dimensional attractor.



Using the prediction error method focuses on the ability of related topological points to predict the future
location of the trajectory.  Given a random fiducial point on one trajectory, a specified number of points in the

corresponding geometric neighborhood on the other trajectory are selected.   Both the single point and the
neighborhood of points are advanced a small number of time steps.  Comparing the geometric center of the
evolved group of points to the actual destination of the single point indicates how well the second trajectory can
predict the first.  The Euclidean distance between the single advanced point and the center of the evolved
neighborhood is the prediction error.   Figure 3 illustrates the concept behind the cross-prediction approach.

Both cross-prediction error reflecting how one attractor predicts another and a self-prediction error
representing how one trajectory predicts itself can be used as metrics to monitor a system.  Coupling between
each sensor signal changes as the structure is damaged such that local responses are less correlated, resulting
in higher prediction errors.  This study focuses on the cross-prediction error of attractors constructed from
accelerometer responses as a feature to describe the damage conditions of a bolted structure.

III.  PROCEDURE

A. Experimental Setup
The apparatus for the experiment included an aluminum frame structure (see Figure 4) and

electrodynamic shaker both clamped to a workbench.  The structure was clamped to simulate a fixed boundary
condition.  The fixed boundary condition was chosen because the low frequency bias of the Lorenz waveform
resulted in the entire structure being translated as a rigid body by the shaker input under free boundary
conditions.  All bolts in the frame were torqued to 68 N-m except the instrumented bolt.

A power amplifier
transferred the Lorenz
waveform signal to the
shaker, which in turn
delivered force to the
structure in the horizontal
direction via a stinger with a
PCB 208 -A03  f o r ce
t ransducer ,  des ignated
channel (Ch) 1, mounted to
the st ructure.   Four
accelerometers were used to
measure the response of the
system at locations near the
joints.  One PCB 355B04 1
V / g  a c c e l e r o m e t e r ,

Figure 4.  The aluminum frame used as the test structure consisted of
base, two side beams, and one top beam connected by steel angle
brackets and steel bolts.

Figure 3.  A qualitative illustration of the cross prediction error
between two attractors.   The prediction error is the Euclidean
distance between the time evolved fiducial point and the geometric
center of the evolved neighborhood in a second attractor.



designated channel 2, was mounted in the horizontal direction just below the shaker input connection and another
was mounted vertically on the top beam just left of the upper right bracket, designated channel 3.  One PCB
352A24 100 mV/g accelerometer, designated channel 4 was mounted horizontally on the left side of the upper
right bracket and another, designated channel 5 was mounted horizontally on the right vertical beam just below
the upper right bracket (see Figure 5).

The top right bracket was connected to
the right vertical beam (as shown in Figure 6)
using an ALD-DYNAGAGE instrumented bolt,
which was connected to a 10V DC power supply
for the wheatstone bridge excitation.  The power
amplifier, force transducer, accelerometers, and
instrumented bolt were connected to a National
Instruments data acquisition board with BNC
connectors.  The data acquisition board was
connected to a desktop PC with a National
Instruments 6052E data acquisition card.  The
experiment was controlled by a laptop computer,
which was connected via Ethernet to the
desktop PC. MATLAB 6.5 was used extensively
in both the data acquisition and data analysis
phases of the study with MATLAB’s xPC Target
toolbox being the primary software component
for data acquisition.  The laptop was the host
computer for xPC Target, and the desktop PC
was the target computer.

For the first test condition, the instrumented bolt was left
fully loose so that there was a visible gap between the nut and the
structure.  Executing a MATLAB script started the shaker with the
Lorenz waveform input for 25 seconds.  The second before and
after the shaker run were also recorded for the purpose of
monitoring the preload in the bolt under static conditions.  Five
runs were recorded under this condition and then the bolt was
tightened to the next test condition.  Table 1 summarizes the bolt
preload conditions tested.
.
Table 1. Experimental Damage Conditions

Damage
Case

Description Measured Bolt Preload
(N)

1 27 N-m torque 10400
2 14 N-m torque 7860
3 7 N-m torque 6420
4 3 N-m torque 5450
5 1 N-m torque 4780
6 Finger tight 4550
7 Loose no gap --
8 Loose with gap --

Representative time series data for the Lorenz waveform signal and the corresponding time series
responses of the force transducer and accelerometers are shown in Figure 7.  The output from sensors located
close to the shaker input are more similar to the original Lorenz waveform than those from more remote sensors
because of structural filtering.

B.  Data Acquisition and Cleansing
Processing the experimental data was accomplished with a combination of MATLAB scripts and TISEAN

routines.  TISEAN is a set of executable programs written in C for non-linear time series analysis [15].  The first
step in processing the data was to remove 0.25 s from both the beginning and end of the run to eliminate any

Figure 5.  Instrumentation of the frame structure included
coupling with a horizontal shaker stinger rod, a force
transducer (channel 1) to measure the stinger input into the
structure, four accelerometers to measure the structure's
response at various locations (channels 1-4), and an
instrumented bolt at the damaged joint (channel 6).

Figure 6.  A detailed view of the instrumented
structure shows the horizontal bolt connection
which was damaged (loosened) during testing.
The instrumented bolt recorded the tension,
while accelerometers on the steel angle
bracket (channel 4) and the right side beam
(channel 5) measure signals across the joint.



transients from the shaker starting and stopping.  The delay was chosen as the point at which TISEAN’s
autocorrelation function showed the time series was less than 33 percent correlated with itself. Finding the
embedding dimension was accomplished with TISEAN’s false nearest neighbors function by finding the
dimension where the function decayed below 5 percent or its first minimum.   Representative plots of the results
of the autocorrelation and false nearest neighbors functions are shown in Figure 8.

After determining the delay and embedding dimension, the cross prediction error between the time series
measured by different accelerometers was calculated using a version of TISEAN’s xzero function that had been
modified to pick a random fiducial point.  For the eight damage conditions, 1000 cross prediction errors were
calculated for the Ch 4 attractor predicting the Ch 5 attractor and 1000 for the Ch 5 attractor predicting the Ch 4
attractor.    Both prediction directions were examined to see if the predictions were direction independent.  The
choice of calculating 1000 prediction errors was made to adequately compare the attractor topologies.
Additionally, cross prediction errors in both directions were calculated for the force transducer predicting each of
the accelerometer responses as well as Ch 2 predicting Ch 4 and Ch 5 responses.

After the cross prediction errors had been calculated, the results were resampled.  The algorithm
generated a new set of data by randomly selecting 50 points with replacement from the original data set and
calculating the mean.  This process was repeated 1000 times for each damage condition to generate a set of
resampled data.  Confidence limits were defined by two-sided hypothesis testing of the mean.  The data were
thus plotted as the global resampled mean bounded by the upper and lower confidence limits:

n

Z s
m

a
2± (3)

where m is the global mean of the resampled subsets, Za/2  = 1.96 is the standard normal deviate associated with
95% confidence, s is the global standard deviation of the resampled subsets, and n = 50 is the size of each
subset.  Such a procedure, under the central limit theorem, converges the probability density function to a
Gaussian profile.

Figure 7.  Representative time series responses for
baseline conditions (damage case 1) illustrate how the
structure successively filters the input signal that is
propagated throughout the frame.

Figure 8.  Representative auto-
correlation and false nearest
neighbors plots for determining
delay and embedding dimension



IV.  Results

Figure 9 shows the mean resampled prediction error between channel four and five, plotted against
damage level.  Examining the plot from tightest to loosest condition, there is an increase in the mean prediction
error as the damage level makes the transition from tight to loose conditions.  The first five damage levels can be
considered tight conditions and the last three can be considered loose.  The magnitudes of the error bars are
equal to the resampled prediction errors’ confidence interval at the corresponding damage level.

The probability density functions (PDFs) illustrate why the confidence intervals in the plot tend to increase
with damage level.  Figure 10 overlays eight PDFs that were generated using a kernel smoothing method from
MATLAB.  The PDFs corresponding to tight conditions are clustered on the left side of the plot while the loose
condition PDFs are wider curves on the right.

Unfortunately the extent of the damage could not be seen.  This limitation could be caused by the fact
that the structure was not supporting a load except for its own weight.  If the frame bears a load, the prediction
error might be made more sensitive to subtle changes in the system dynamics.  Loading the structure could allow
the extent of the damage to be determined.  Thus the correlation between bolt preload and attractor prediction
error needs to be studied further.

The plots on Figure 11 indicate that the
prediction error calculation is insensitive to forecast horizon.  On each plot, the like colored lines correspond to
prediction errors with five and ten time steps.  The lines tend to track each other, pointing to insensitivity in the
prediction error calculation to the number of time steps that the attractor trajectories are evolved.

Figures 9, 11, and 12 all indicate that this method cannot differentiate among tight conditions.  In many
cases, the mean prediction error at a given damage level is within the confidence limits of the mean at adjacent
damage levels.  Furthermore, Figures 11 and 12 indicate that locating damage with this technique may not be as
straightforward as hoped.  The prediction errors in the left hand plot in Figure 11 show an increase in prediction
error in the Ch 1 to Ch 4 and Ch 1 to Ch 5 pairings as the bolt goes from tight to loose conditions.  In addition, the
prediction errors from Ch 1 to Ch 2 and Ch 1 to Ch 3 decrease under the same conditions, so it can be
qualitatively concluded that the most decoupling of dynamic behavior takes place near the Ch 4 and Ch 5
accelerometers.  It is known from the experimental set-up that was in fact the case.  Other cross-prediction
combinations (Figure 12) do not indicate that the prediction error from Ch 4 to Ch 5 stands out compared to other
channel combinations that were not as close to the damaged location.

Figure 9.  Mean prediction error of channel 4
predicting channel 5.

Figure 10.  Probability density functions of prediction
errors per damage case for channel 4 predicting
channel 5.



Figure 11.  Average cross prediction error as a function of damage case for excitation (channel 1, force
transducer) predicting the response (channels 2-5, accelerometers) and vice versa.

Figure 12.  Average cross prediction error as a function of damage case for accelerometer responses at
various locations predicting each other in both directions.



V.  CONCLUSIONS
The cross prediction errors showed differences among damage conditions in a range from the 1 N-m of

torque to sub-finger tight cases.  Also, a qualitative examination of the prediction error trends for the force
transducer predicting the accelerometer responses indicates that the damage location was between
accelerometers four and five.  However, the extent of the damage could not be determined because the prediction
error was essentially the same value on the interval between the 27 N-m and the 1 N-m of torque cases.

For further research, an instrumented bolt more sensitive to the loads at the transition region is needed.
Changes in parameters such as bolt preload, the rate of the chaotic waveform input, relative orientation between
the shaker and the instrumented bolt, multiple damage points, and the locations of the accelerometers may be
interesting for further study. Additional research could also investigate the effectiveness of this method for
detecting damage in other modes of failure such as crack growth and weld unzipping.
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